direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D4×D5, C20⋊C24, D10⋊2C24, D20⋊8C23, C24⋊11D10, C10.5C25, Dic5⋊1C24, (C2×C10)⋊C24, C5⋊2(D4×C23), C4⋊1(C23×D5), (C2×C20)⋊4C23, (C4×D5)⋊4C23, (C5×D4)⋊6C23, (D5×C24)⋊5C2, C10⋊2(C22×D4), C5⋊D4⋊1C23, C2.6(D5×C24), (C22×C4)⋊39D10, C23⋊5(C22×D5), C22⋊1(C23×D5), (D4×C10)⋊49C22, (C22×D20)⋊22C2, (C2×D20)⋊60C22, (C22×C10)⋊6C23, (C22×D5)⋊8C23, (C23×C10)⋊15C22, (C22×C20)⋊25C22, (C2×Dic5)⋊10C23, (C23×D5)⋊23C22, (C22×Dic5)⋊51C22, (D4×C2×C10)⋊9C2, (D5×C22×C4)⋊8C2, (C2×C10)⋊14(C2×D4), (C2×C4×D5)⋊58C22, (C2×C4)⋊8(C22×D5), (C2×C5⋊D4)⋊50C22, (C22×C5⋊D4)⋊19C2, SmallGroup(320,1612)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D4×D5
G = < a,b,c,d,e,f | a2=b2=c4=d2=e5=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 4990 in 1362 conjugacy classes, 503 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, D4, C23, C23, C23, D5, D5, C10, C10, C10, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C23×C4, C22×D4, C22×D4, C25, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, D4×C23, C2×C4×D5, C2×D20, D4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C23×D5, C23×D5, C23×D5, C23×C10, D5×C22×C4, C22×D20, C2×D4×D5, C22×C5⋊D4, D4×C2×C10, D5×C24, C22×D4×D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C25, C22×D5, D4×C23, D4×D5, C23×D5, C2×D4×D5, D5×C24, C22×D4×D5
(1 49)(2 50)(3 46)(4 47)(5 48)(6 41)(7 42)(8 43)(9 44)(10 45)(11 56)(12 57)(13 58)(14 59)(15 60)(16 51)(17 52)(18 53)(19 54)(20 55)(21 66)(22 67)(23 68)(24 69)(25 70)(26 61)(27 62)(28 63)(29 64)(30 65)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)
(1 24)(2 25)(3 21)(4 22)(5 23)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 54 9 59)(2 55 10 60)(3 51 6 56)(4 52 7 57)(5 53 8 58)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 71 26 76)(22 72 27 77)(23 73 28 78)(24 74 29 79)(25 75 30 80)(31 66 36 61)(32 67 37 62)(33 68 38 63)(34 69 39 64)(35 70 40 65)
(1 44)(2 45)(3 41)(4 42)(5 43)(6 46)(7 47)(8 48)(9 49)(10 50)(11 56)(12 57)(13 58)(14 59)(15 60)(16 51)(17 52)(18 53)(19 54)(20 55)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 43)(2 42)(3 41)(4 45)(5 44)(6 46)(7 50)(8 49)(9 48)(10 47)(11 51)(12 55)(13 54)(14 53)(15 52)(16 56)(17 60)(18 59)(19 58)(20 57)(21 61)(22 65)(23 64)(24 63)(25 62)(26 66)(27 70)(28 69)(29 68)(30 67)(31 71)(32 75)(33 74)(34 73)(35 72)(36 76)(37 80)(38 79)(39 78)(40 77)
G:=sub<Sym(80)| (1,49)(2,50)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,54,9,59)(2,55,10,60)(3,51,6,56)(4,52,7,57)(5,53,8,58)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,71,26,76)(22,72,27,77)(23,73,28,78)(24,74,29,79)(25,75,30,80)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,44)(2,45)(3,41)(4,42)(5,43)(6,46)(7,47)(8,48)(9,49)(10,50)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,43)(2,42)(3,41)(4,45)(5,44)(6,46)(7,50)(8,49)(9,48)(10,47)(11,51)(12,55)(13,54)(14,53)(15,52)(16,56)(17,60)(18,59)(19,58)(20,57)(21,61)(22,65)(23,64)(24,63)(25,62)(26,66)(27,70)(28,69)(29,68)(30,67)(31,71)(32,75)(33,74)(34,73)(35,72)(36,76)(37,80)(38,79)(39,78)(40,77)>;
G:=Group( (1,49)(2,50)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,54,9,59)(2,55,10,60)(3,51,6,56)(4,52,7,57)(5,53,8,58)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,71,26,76)(22,72,27,77)(23,73,28,78)(24,74,29,79)(25,75,30,80)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,44)(2,45)(3,41)(4,42)(5,43)(6,46)(7,47)(8,48)(9,49)(10,50)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,43)(2,42)(3,41)(4,45)(5,44)(6,46)(7,50)(8,49)(9,48)(10,47)(11,51)(12,55)(13,54)(14,53)(15,52)(16,56)(17,60)(18,59)(19,58)(20,57)(21,61)(22,65)(23,64)(24,63)(25,62)(26,66)(27,70)(28,69)(29,68)(30,67)(31,71)(32,75)(33,74)(34,73)(35,72)(36,76)(37,80)(38,79)(39,78)(40,77) );
G=PermutationGroup([[(1,49),(2,50),(3,46),(4,47),(5,48),(6,41),(7,42),(8,43),(9,44),(10,45),(11,56),(12,57),(13,58),(14,59),(15,60),(16,51),(17,52),(18,53),(19,54),(20,55),(21,66),(22,67),(23,68),(24,69),(25,70),(26,61),(27,62),(28,63),(29,64),(30,65),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75)], [(1,24),(2,25),(3,21),(4,22),(5,23),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,54,9,59),(2,55,10,60),(3,51,6,56),(4,52,7,57),(5,53,8,58),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,71,26,76),(22,72,27,77),(23,73,28,78),(24,74,29,79),(25,75,30,80),(31,66,36,61),(32,67,37,62),(33,68,38,63),(34,69,39,64),(35,70,40,65)], [(1,44),(2,45),(3,41),(4,42),(5,43),(6,46),(7,47),(8,48),(9,49),(10,50),(11,56),(12,57),(13,58),(14,59),(15,60),(16,51),(17,52),(18,53),(19,54),(20,55),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,43),(2,42),(3,41),(4,45),(5,44),(6,46),(7,50),(8,49),(9,48),(10,47),(11,51),(12,55),(13,54),(14,53),(15,52),(16,56),(17,60),(18,59),(19,58),(20,57),(21,61),(22,65),(23,64),(24,63),(25,62),(26,66),(27,70),(28,69),(29,68),(30,67),(31,71),(32,75),(33,74),(34,73),(35,72),(36,76),(37,80),(38,79),(39,78),(40,77)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | ··· | 2W | 2X | ··· | 2AE | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | D4×D5 |
kernel | C22×D4×D5 | D5×C22×C4 | C22×D20 | C2×D4×D5 | C22×C5⋊D4 | D4×C2×C10 | D5×C24 | C22×D5 | C22×D4 | C22×C4 | C2×D4 | C24 | C22 |
# reps | 1 | 1 | 1 | 24 | 2 | 1 | 2 | 8 | 2 | 2 | 24 | 4 | 8 |
Matrix representation of C22×D4×D5 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 20 |
0 | 0 | 0 | 4 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 37 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 34 | 1 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 7 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,4,0,0,0,20,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,37,0,0,0,0,40],[1,0,0,0,0,0,34,40,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,7,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
C22×D4×D5 in GAP, Magma, Sage, TeX
C_2^2\times D_4\times D_5
% in TeX
G:=Group("C2^2xD4xD5");
// GroupNames label
G:=SmallGroup(320,1612);
// by ID
G=gap.SmallGroup(320,1612);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,235,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^2=e^5=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations